

A Materials Design House And More





# **Materials Corporation**

| • | About Daxin              | 0. |
|---|--------------------------|----|
|   | Research and development | 0  |





# Products

# Semiconductor Materials

| Photosensitive Dielectric/Passivation                         |          |
|---------------------------------------------------------------|----------|
| Dielectric for Redistribution Layer                           | 05       |
| Buffer Layer                                                  | 06       |
| · Laser Release Layer                                         |          |
| <ul> <li>Multi-functional Release Layer</li> </ul>            | 07       |
| · Release Layer For Transfer Bonding                          | 08       |
| Protection Materials                                          |          |
| · Temporary Protection Layer                                  | 09       |
| Passivation Layer                                             | 10       |
| · High-Purity Specialty Chemicals for Wet Clean Process       | 4.4      |
| · Strippers/Removers                                          | 11       |
| · Selective Etchants                                          | 11<br>12 |
| · Cu Seed Etchant                                             | 12       |
| · High-Purity Specialty Chemicals for Nanolithography Process |          |
| · High-Purity Solvent                                         | 13       |
| · Topcoat                                                     | 13       |

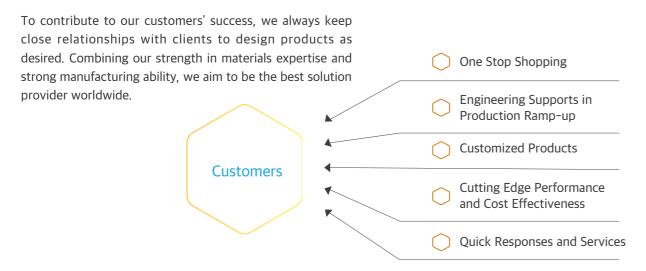







| · LCD Materials                                           |    |
|-----------------------------------------------------------|----|
| · Black Matrix Resist                                     | 14 |
| · Photo Spacer                                            | 15 |
| · PI Alignment Layer                                      | 16 |
| · Liquid Crystal                                          | 17 |
| · Thermal Overcoat                                        | 18 |
| · Cu/Mo Etchant / Cu Stripper                             | 19 |
| · Photoresist Stripper                                    | 19 |
| · Touch Panel Materials                                   |    |
| · Photo Overcoat                                          | 20 |
| · Optial Clear Resin                                      | 21 |
| <ul> <li>Flexible EPD/OLED Materials</li> </ul>           |    |
| <ul> <li>Photosensitive Dielectric/Passivation</li> </ul> | 22 |
|                                                           |    |
| Key Raw Materials                                         |    |
| · Functional Monomer                                      |    |
| · Dianhydride                                             | 23 |
| Monoacrylate                                              | 24 |
| · Low Chlorine Epoxy Monomer                              | 25 |
| · Specialty Polymer                                       |    |
| · Modified Acrylate                                       | 26 |
| Modified Siloxane                                         | 27 |
| · High-Purity Polymer                                     | 27 |
|                                                           |    |
|                                                           |    |
| Instrument Analysis                                       | 28 |




# **About DAXIN**

Founded in 2006, DAXIN Materials Corporation started with the aim of being the Material Design House. Since we have always strived to deliver best solutions that meet our customers' needs, our corporation has constantly developed customized products from wet chemicals and functionalized materials to polymer solutions. With our expertise and capabilities related to material design, we have consistently offered innovative and value-added solutions for our customers. DAXIN Materials Corporation is now listed on the Taiwan Stock Exchange under ticker number 5234.

**Culture** Daxin 5i integrity Vision innovation intelligent integration To Be a Leading intercommunication Company for Materials individuals Innovations DAXID Mission Best Solution Provider for Customized Products



## **Best Solution Provider for Customized Products**



# Research & Development

# **Core Technologies and Product Development**

All the innovations are the extension of fundamental science. From the basic photochemistry to color simulation, molecular simulation, dispersion science, surface chemistry, organic and inorganic hybrid materials design, monomer & polymer synthesis/formulation, and precision manufacturing and advanced purification technologies, Daxin links all these technologies to provide superior and customer-oriented products in different Semiconductor and Liquid Crystal Display (LCD) fields.



# **Consistent Innovation & Intellectual Property Protection**

To defend our innovation and ensure the right for production, we are working to improve intellectual property protection and enforcement for our company in markets around the globe. Our patents include all ranges: from specific chemical formula, better solution to current technology, to the improvements of products. Until 2021 the approved patent license number was more than 281, the application number was more than 418. With intellectual property protection, it gives us exclusive right granted for invention and protects our corporate value in the market.

03 About DAXIN

Research & Development 04





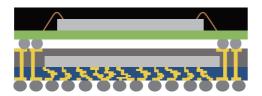
# **Semiconductor Materials**

# **Photosensitive Dielectric/Passivation**

# **Dielectric for Redistribution Layer**

## **Applications**

Varnish-type photosensitive dielectrics for the advanced chip packaging (WLP/PLP) are designed, which could be spin or slit-coated into thin film on the substrate and is photosensitive, able to be patterned into multi-layer redistribution layer (RDL). Low curing temperature, excellent Cu adhesion and electric properties are achieved for the varying chip applications.


Multi-chip Fan-Out Package



# Features of General Type

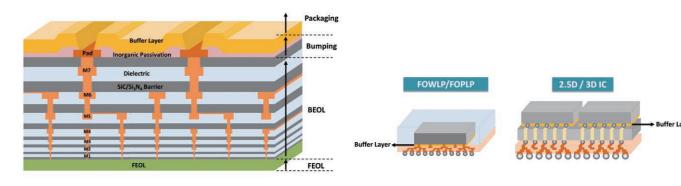
- Low temperature curing
- O Excellent Cu adhesion
- O Low CTE
- High resolution
- Excellent chemical resistance

Fan-Out PoP



# Features of Low Dk/Df Type

- Low temperature curing
- O Low Dk/Df
- High resolution
- Excellent chemical resistance


## Specifications

| Product Name                                                        |                    | RPH series                                      |             |                                 |                        |
|---------------------------------------------------------------------|--------------------|-------------------------------------------------|-------------|---------------------------------|------------------------|
| Features                                                            |                    | Negative-type<br>Low curing temperature<br>PSPI |             | Negative-type<br>Low Df<br>PSPI | Positive-type<br>PSPBO |
| Non-Volatile Matter Content                                         | %                  | ~40                                             | ~40         | ~40                             | ~25                    |
| Curing Temperature                                                  | °C                 | 230                                             | 180         | 230                             | 250                    |
| UV dosage (i/g/h line)                                              | mJ/cm <sup>2</sup> | 230~300                                         | 230~300     | 200~250                         | 150                    |
| Young's Modulus                                                     | GPa                | 2.13                                            | 2.04        | 2.03                            | 1.9                    |
| Elongation (RT)                                                     | %                  | 50                                              | 40          | 60                              | 12                     |
| Tg                                                                  | °C                 | 230                                             | 200         | 208                             | 269                    |
| CTE (50~100°C)                                                      | ppm/ K             | 48.5                                            | 48.1        | 60.4                            | 40.1                   |
| Dk/Df (1 GHz)                                                       | -                  | 3.45/ 0.024                                     | 3.35/ 0.022 | 3.06/0.0072                     | 3.01/ 0.020            |
| Reliability<br>* HTS 175°C 168hr<br>* HAST 96hr<br>* TST 200 cycles | -                  | 5B                                              | 5B          | 5B                              | 5B                     |

# **Buffer Layer**

# **Applications**

Daxin's photosensitive dielectrics, which possess excellent mechanical properties and thermal stability, can be used as buffer layers for the front-end wafer process. Buffer layers can protect low K dielectric layer from stress induced by package processes and increase the reliability of ICs. Also, its high resolution can meet the requirements of low dimension connections and simplify the manufacturing, which can increase the yields and performances of products.



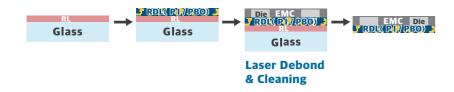
# **Features**

- High resolution
- Excellent mechanical properties
- Excellent thermal stability

- O Excellent Cu adhesion
- O Low CTE

# Specifications

| Product Name                |        | HMPI series |
|-----------------------------|--------|-------------|
| Viscosity                   | cP     | 1000~3500   |
| Non-Volatile Matter Content | %      | 10~40       |
| Young's Modulus             | GPa    | 4.0~5.0     |
| Tensile strength (at break) | MPa    | 150~200     |
| Elongation (at break)       | %      | 20~40       |
| CTE(50~175°C)               | ppm/°C | 20~35       |
| Tg                          | °C     | 280~310     |
| Td (5% weight loss)         | °C     | 300~320     |
| Shrinkage                   | %      | 30~50       |
| Aspect ratio                | -      | 0.8~1.2     |




# Laser Release Layer

# Multi-functional Release Layer

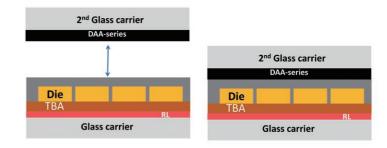
# **Applications**

Temporary bonding of wafer to glass carrier has emerged as a viable method for various electronic device processing. Laser debonding enables the use of laser release layer (RL) that can withstand high temperatures above 300°C. The processed devices are finally debonded and separated from the carriers easily.



## Features

- O Excellent thermal resistance and stability over 300° C
- O Easily stripped by laser
- O Applicable under various laser wavelength (308/355/532/1064nm) with high absorption
- Optical alignment (Tunable IR absorption or transmittance)


# Specifications

| Product Nan            | ne                                      |          | LRA-2 series                                   | Remarks    |
|------------------------|-----------------------------------------|----------|------------------------------------------------|------------|
| Field of App           | lications                               |          | Semiconductor                                  |            |
| Features               |                                         |          | High laser absorption efficiency IR absorption |            |
| Varnish                | Non-Volatile Matter Content             | wt%      | 10                                             | Customized |
| Varinsii               | Viscosity                               | сР       | 100~200                                        | Customized |
|                        | Coating Method                          | -        | Slit or Spin                                   |            |
| Process<br>Conditions  | Pre-bake                                | °C ; min | 90 ; 10                                        |            |
|                        | Post-bake                               | °C ; min | 250 ; 30                                       |            |
| Thermal<br>Properties  | Td (1% Loss)                            | °C       | ~300                                           | TGA        |
| Optical                | Transmittance                           | %        | < 2                                            | 1 μm       |
| Properties             | b*                                      | -        | > 2                                            |            |
| Chemical<br>Resistance | Stripper<br>Aqua Regia<br>Metal Etchant | -        | No damage                                      |            |

# **Release Layer For Transfer Bonding**

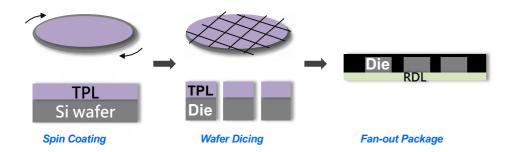
# **Applications**

It is used in temporary bonding & debonding process for wafer/panel level packaging (WLP/PLP). It offers stable adhesion through subsequently physical or chemical processes. It can be debonded by laser easily.



# Specifications

| Product Name            |                     |                    | DAA-series             | Remarks                         |
|-------------------------|---------------------|--------------------|------------------------|---------------------------------|
| Film Thickness          |                     | μm                 | 5~35                   |                                 |
|                         | Pre-bake            | °C; min            | 50;5<br>90;5<br>150;30 |                                 |
|                         | Bonding Temperature | °C                 | 150~180                |                                 |
| Process<br>Conditions   | Bonding Pressure    | kg/cm <sup>2</sup> | 5                      |                                 |
|                         | Bonding Time        | min                | 5                      |                                 |
|                         | Post-bake           | °C; min            | 230;30                 |                                 |
| Adhesion                |                     | N/mm²              | 2                      | Pull test @glass                |
| Thermal Properties      | CTE                 | ppm/°C             | 7~8                    | 40~70°C                         |
| Thermal Properties      | Td (5% weight loss) | °C                 | 290                    | By TGA                          |
| Chemical Resistance     | Cross-Cut Test      | -                  | 5B                     | @Glass<br>Stripper, 80°C, 10min |
| Laser Debond Wavelength |                     | nm                 | 355~1064               |                                 |
| Cleaning Method         |                     |                    | Plasma                 |                                 |



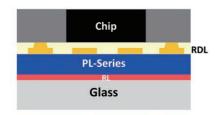

# Protection Materials

# **Temporary Protection Layer**

# **Applications**

Temporary Protection Layer is applicable in die singulation process, to protect device surface by spincoating on the wafer, capable of avoiding die chipping or defects during wafer dicing and grinding. Complete removal of Temporary Protection Layer is achieved by wet cleaning after process.




# Specifications

|                       | Product Name                | TPL-series         |           |
|-----------------------|-----------------------------|--------------------|-----------|
| Field                 | d of Applications           | Advanced Packaging |           |
| W. 14                 | Viscosity                   | сР                 | 1000~5000 |
| Varnish               | Non-Volatile Matter Content | %                  | 10~40     |
|                       | Coating Method              | -                  | Spin/Slit |
| Process Conditions    | Pre-bake                    | °C ; min           | 90; 10    |
|                       | Post-bake                   | °C ; min           | 230 ; 30  |
| Thermal Properties Tg |                             | °C                 | 250       |
|                       | Modulus                     | GPa                | 3         |
| Mechanical Properties | СТЕ                         | ppm/k              | 65        |

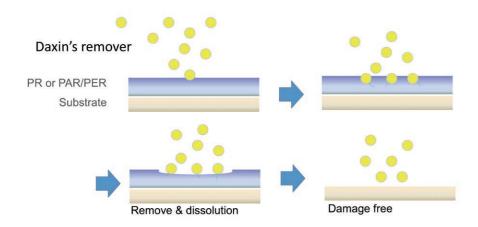
# **Passivation Layer**

# **Applications**

Passivation layer is used as an effective strategy to protect the active semiconductor surface from the impact by the surrounding environment. Moreover, the feasibility of laser patterning can be retained.



# Specifications


| Product Name                | PL series |                     |
|-----------------------------|-----------|---------------------|
| Appearance                  | -         | Transparent / Black |
| Non-Volatile Matter Content | %         | 10-20               |
| Curing Temperature          | °C        | 230                 |
| Young's Modulus             | GPa       | 2~4                 |
| Elongation (RT)             | %         | 50~60               |
| Tg                          | °C        | 230-250             |
| Td 5% Weight Loss           | °C        | >400                |
| CTE (50~100°C)              | ppm/k     | 30~50               |



# High-Purity Specialty Chemicals for Wet Clean Process

# **Strippers/ Removers**

Daxin's formulated strippers and removers are designed for effective removal of photoresist (PR) or post etching/ashing residues (PERs/PARs) with high protection and compatibility to metal or silicon congaing substrate, which are applicable in advanced IC process.

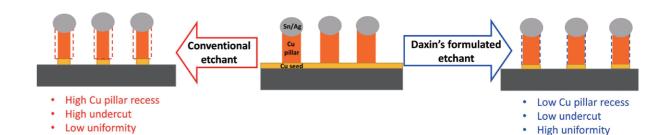


## **Features**

- O Effective removability of thick resist
- Effective removability of PERs/PARs
- O Low metal etching rate
- Non-NMP/DMSO solvent system
- High flash point
- High purity (metal ions<1ppb)

# **Selective Etchants**

The specifications and purity of wet chemicals are continuously increasing due to the more advanced processes. Daxin provides a variety of solutions for different etch selectivities between materials. Customized services for formulation optimization are also available.


# **Cu Seed Etchant**

## **Applications**

Daxin's formulated Cu seed etchant is designed for the wet clean process in semiconductor advanced packaging and possesses various advantageous properties for the fine pitch process:

- High etch selectivity between sputtered and electroplated copper
- Low undercut
- High uniformity
- Low etch rate to tin and silver

Daxin's Cu seed etchant can demonstrate high copper loading and low operation temperature for the reclaim mode process. Without environmentally hazardous substances, not only the process cost but also chemical waste can be reduced.







Zoom in



# **Display Materials**



# **Black Matrix Resist**

# **Applications**

Black matrix is arranged in the form of stripes, grids or mosaics between color patterns of RGB in color filter for LCD panel. This product is designed for high light-shielding properties to increase the contrast ratio of LCD panel.

## Features

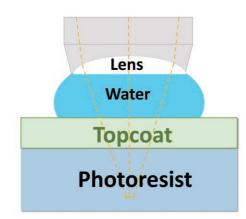
- O High optical density
- O High coating uniformity, high sensitivity, excellent adhesion, excellent developing performance
- O Excellent reliability in heat, light, and chemical resistance with good
- O New: Black matrix resist for LCD panel with high resolution



**High-Purity Solvent** 

With advanced purification technologies, Daxin provides high purity solvent which can be used in the semiconductor/display industries and fulfills the needs of low metal ions and low particle content.

High-Purity Specialty Chemicals for Nanolithography


# **Topcoat**

# **Applications**

Daxin provides topcoat materials for immersion lithography, which can prevent photoresist from composition change due to substances dissolving into liquid (ex: water). In addition, topcoat materials can used for refractive index adjustment. A variety of specialty chemicals for nanolithography process are under development.

## **Features**

- Good water-repellent
- $\bigcirc$  Good dissolution in developer
- O No intermixing and dissolution with photoresist



# Process Flow Post exposure baking Development Resist coating **Topcoat coating** Expose (PEB) (Immersion) Resist





Glass Substrate



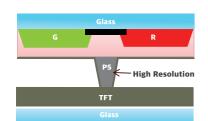
# Specifications

|                             |                                  |                      |                                    | 100000000000000000000000000000000000000                                          |
|-----------------------------|----------------------------------|----------------------|------------------------------------|----------------------------------------------------------------------------------|
| Product Name                |                                  | ABK406X              | ABK408X                            | Remarks                                                                          |
| Field of Applications       |                                  | Full High Definition | Ultra High Definition              |                                                                                  |
| Features                    |                                  | Standard             | High Resolution<br>High Resistance |                                                                                  |
| Viscosity                   | cP                               | 3.0 ± 0.5            | 3.0 ± 0.5                          |                                                                                  |
| Non-Volatile Matter Content | %                                | 13 ~ 15              | 13 ~ 15                            |                                                                                  |
| Line Width                  | μm                               | 6~ 30                | 4~8                                |                                                                                  |
| Remaining Film Thickness    | %                                | 75 ~ 85              | 75 ~ 85                            | After PB/ Before PB<br>(PB: 230°C x 20min)                                       |
| Process Conditions          |                                  |                      |                                    |                                                                                  |
| Soft-Bake                   | °C; sec                          | 70 ~ 120 ; 90        | 70 ~ 120 ; 90                      |                                                                                  |
| Exposure Energy             | mJ/cm <sup>2</sup>               | 40 ~ 100             | 45 ~ 100                           |                                                                                  |
| Development                 |                                  | KOH / Buffer         | KOH / Buffer                       | At 23°C ~ 25°C                                                                   |
| Hard-Bake                   | °C; min                          | 230; 20              | 230; 20                            |                                                                                  |
| Optical Density             | 1 / μm                           | 4.5 ~ 4.0            | 4.0 ~ 3.0                          |                                                                                  |
| Surface Resistivity         | Ω/□                              | 1 x 10 <sup>8</sup>  | > 1 x 10 <sup>14</sup>             |                                                                                  |
| Chemical Resistance         |                                  |                      |                                    |                                                                                  |
| IPA                         |                                  |                      |                                    | After 25°C Dip 5min +120°C x 2min                                                |
| NMP                         | (OD Before -OD After ) / $\mu m$ | < 0.1                | < 0.1                              | After 25°C Dip 5min + 240°C x 15min                                              |
| γ-buthyrolactone            |                                  |                      |                                    | Arter 25 C Dip Shim 1 240 C X ISHim                                              |
| Weight Loss                 | %                                | < 3                  | < 3                                | After PB + 230°C x 60min by TGA                                                  |
| Pressure Cook Test          |                                  | 5B                   | 5B                                 | After PB + 230°C x 180min<br>121°C, 2 atm, RH 100% for 24hr<br>by cross-cut test |

Display Materials 14 13 Semiconductor Materials



# **Photo Spacer**


# **Applications**

Via adjusting electric field between two glass substrates, the arrangement of liquid crystal materials can be controlled to make LCD exhibit expected pictures. Photo Spacer acts as a key component in TFT LCD which is used to maintain the cell gap's uniformity.

## Features

- High sensitivity
- Good coatability
- O High elastic recovery ratio
- Excellent mechanical properties
- O New:

High resolution photo spacer for fast response panel Applicable for ultra-high LCD cell thick panel







Liguid Crystal



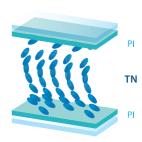
# Specifications

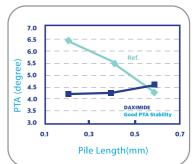
|                          | Product Name Normal PS               |      | Normal PS                                                                                           | Low Ce <b>ll</b> Gap HPS                                                              | Ultra High PS                                                                |
|--------------------------|--------------------------------------|------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Field of Applications    |                                      |      | TN/VA/PSA/COA                                                                                       | AFFS                                                                                  | 3D display/electro-chromic glass                                             |
|                          | Features                             |      | Widely used in different process<br>conditions     Wide LC margin, Excellent<br>pressure resistance | Applicable in fast response<br>high-resolution screens     Stable with low volatility | High aspect ratio, thickness<br>can be achieved to 45um     High taper angle |
|                          | Viscosity                            | (cP) | 4.3±0.3                                                                                             | 3,25±0,3                                                                              | 5,1±0,3                                                                      |
|                          | Non-Volatile Matter Content          | (%)  | 18,7±0,5                                                                                            | 23,2±0,5                                                                              | 23,3±0,5                                                                     |
| Physical<br>Properties   | Remanent                             | (%)  | 88.5±2                                                                                              | 86±2                                                                                  | 90±2                                                                         |
|                          | Resolution                           | (µm) | 10*10                                                                                               | 5*5                                                                                   | 20*20                                                                        |
|                          | Height diff between<br>main & sub PS | (µm) | 0.3~0.7                                                                                             | 0.3~0.5                                                                               | -                                                                            |
|                          | (460 nm)<br>Transmittance            | (%)  | > 96                                                                                                | > 96                                                                                  | > 96                                                                         |
| Optical Properties       | (540 nm)<br>Transmittance            | (%)  | > 97                                                                                                | > 97                                                                                  | > 97                                                                         |
|                          | Sensitivity                          | (mJ) | 40~50                                                                                               | 40~50                                                                                 | 70                                                                           |
|                          | Hardness                             |      | 5H                                                                                                  | 8H                                                                                    | 6H                                                                           |
| Mechanical<br>Properties | Recovery Ratio                       | (%)  | > 88<br>(40 mN mask size: 20x20 µm)                                                                 | > 80<br>(40 mN, mask size: 10x10 µm)                                                  | > 90<br>(50 mN mask size: 28x28 μm)                                          |
|                          | Adhesion Test                        |      | 5B                                                                                                  | 5B                                                                                    | 5B                                                                           |
| Electrical               | Dielectric Constant                  |      | 3.7                                                                                                 | 3.7                                                                                   | 3,7                                                                          |
| Properties               | Voltage Holding Ratio                | (%)  | > 95                                                                                                | > 95                                                                                  | > 95                                                                         |
| Chemical<br>Resistance   | Heat water/ KOH/<br>TMAH/ IPA/ GBL   |      | Pass                                                                                                | Pass                                                                                  | Pass                                                                         |

# PI Alignment Layer

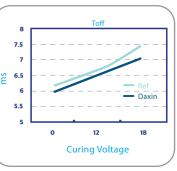
# **Applications**

Polyimide layer is used to controlled the liquid crystal orientation and the pre-tilt angle. Daxin TN and VA mode alignment layers make LCD panels perform well and provide wide process margin for LCD manufactures.


## Features


## TN-PI

- Free image sticking
- O Rubbing mura/ particle free
- Stable pretitle angle
- Excellent reliability after high temperature/ humidity


## VA-PI

- O Image sticking free
- O High VHR and excellent reliability
- O Stable pretilt angle
- O Drop mura free
- Excellent adhesion
- Excellent coating properties





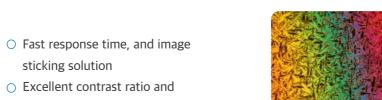




# Specifications

| Product Name                |              | RA-706X                                                                                                            | RA-900X                                                                                                                   | Remarks                                  |
|-----------------------------|--------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Field of Applications       |              | TN-LCD                                                                                                             | PSA-LCD                                                                                                                   |                                          |
| Features                    |              | Improvement for Alignment Force     No Image Sticking     Excellent Printing Performance and     Rubbing Endurance | 1. Drop Mura Free 2. No Image Sticking 3. APR & Inkjet Printing 4. Excellent Printing Performance and Electric Properties |                                          |
| Viscosity                   | cР           | 22~30                                                                                                              | 6~25                                                                                                                      |                                          |
| Non-Volatile Matter Content | %            | 5.5~6.5                                                                                                            | 3,0~7.0                                                                                                                   |                                          |
| Water Content ppm           |              | <2000 <2000                                                                                                        |                                                                                                                           |                                          |
| Ionic Impurities Content    | ppb          | < 500 (Na, K, Cu, Fe)                                                                                              | < 500 (Na, K, Cu, Fe)                                                                                                     |                                          |
| Process Conditions          |              |                                                                                                                    |                                                                                                                           |                                          |
| Soft-Bake                   | °C; min      | 65~70 ; 2                                                                                                          | 70~90 ; 2                                                                                                                 |                                          |
| Hard-Bake                   | °C; min      | 220 ; 17~25                                                                                                        | 210~230 :15~60                                                                                                            |                                          |
| Pretilt Angle               | 0            | 3~6                                                                                                                | 88~90                                                                                                                     |                                          |
| Voltage Holding Ratio, VHR  | %            | > 96                                                                                                               | > 90                                                                                                                      | 1V, 0.6Hz, 60°C                          |
| Ion Density                 | pC           | < 200                                                                                                              | < 1000                                                                                                                    | Instec (10V, 0.01Hz, 60°C)               |
| Residue DC                  | mV           | < 800                                                                                                              | < 100                                                                                                                     | Soaking 5V <sub>DC</sub> , 3600sec, 60°C |
| Volume Resistivity          | $\Omega$ .cm | 10 <sup>11</sup> ~10 <sup>13</sup>                                                                                 | 1011~1013                                                                                                                 | 10KHz                                    |



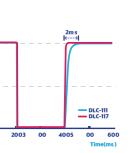

# **Liquid Crystal**

## **Applications**

Liquid crystals are fluid phase of matter which possess orientational ordering. Hence, liquid crystals are anisotropic fluid and could be re-oriented along the direction of the applied electric field, thus controlling light to or not to pass through two-crossed polarizers. In addition, self-alignment liquid crystals have been developed, which are more transparent and environmentally friendly, and is an important technology for the next generation LCD.

## Features

- O High stability to UV and heat
- Wide operating temperature
- O Low threshold voltage and low electrical power consumption




 Excellent contrast ratio and good image quality

sticking solution

curved LCD

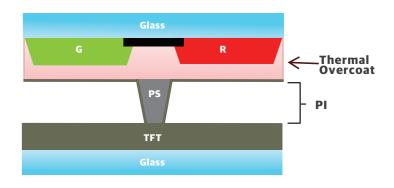
O Self-alignment liquid crystal: suitable for narrow bezel, bezel-less, and





# Specifications

| Product Name                               |        | LC-23             | LC-26             | LC-261            | LC-47             |
|--------------------------------------------|--------|-------------------|-------------------|-------------------|-------------------|
| Field of Applications                      |        | FFS Monitor       | FFS Laptop        | FFS Car Display   | PSA TV            |
| Features                                   |        | Gaming            | Gaming            | Wide Temperature  | Self-alignment    |
| Volume Resistivity                         | Ω • cm | >10 <sup>14</sup> | >10 <sup>14</sup> | >10 <sup>14</sup> | >10 <sup>14</sup> |
| Clearing Point                             | °C     | 80                | 75                | 104               | 75                |
| Optical Anisotropy, ∆n (At 25°C, 589nm)    |        | 0.136             | 0.120             | 0.119             | 0.097             |
| Dielectric Anisotropy, Δ ε (At 25°C, 1KHz) |        | 2.5               | 4.0               | 3.5               | -3.2              |
| V10                                        | V      | 2.9               | 2.41              | 2.49              | 2.75              |
| V90                                        | V      | 5.8               | 5.2               | 5.03              | 4.60              |
| LTS                                        | °C     | -20               | -20               | -40               | -20               |
| Response Time                              | msec   | 7~8               | 7~8               | 14-15             | 15~16             |
| cell gap                                   | μm     | 2.6               | 2.8               | 3.1               | 3.3               |


# **Thermal Overcoat**

# **Applications**

Thermal overcoat is applied to IPS-like panel and acts a transparent planarization layer on Color resists (RGB) and Black matrix (BM), protecting color filter and providing flat surface to ensure subsequent process uniformity.

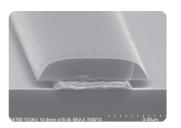
## Features

- High transparency
- Excellent planarization ability
- Good heat and chemical resistivity
- O Low UV transmittance, which protect RGB from UV damage
- High crosslink ratio



## Specifications

| Product Name             | е                           |    | DTOCVS                                 | DTOCV6                                 | Remark                    |
|--------------------------|-----------------------------|----|----------------------------------------|----------------------------------------|---------------------------|
| Field of Appl            | ications                    |    | IPS model with Photo<br>Allgnment PI   | IPS model with<br>Rubbing type PI      |                           |
| Features                 |                             |    | high hardness good oremical resistiviy | excellent<br>plnanarization<br>ability |                           |
|                          | Flatness<br>(OC THK=1.6 μm) | μm | 0.37                                   | 0.25                                   | Max-Min<br>(ΔHx)          |
| Basic<br>Properties      | Remanent                    | μm | 0.17                                   | 0.10                                   | ΔRGB                      |
|                          | Adhesion (on glass)         | %  | 97.6%                                  | 92.3%                                  | 230°C/30Min               |
|                          | Adilesion (on glass)        | -  | 4~5B                                   | 5B                                     | PCT121°C/2atm/12hr        |
| Machanical<br>Properties | Pencil Hardness             | -  | 6H                                     | 5H                                     | @765g                     |
|                          |                             | %  | 99.8                                   | 99.7                                   | @400nm                    |
| Optical<br>Properties    | Transmittance               | %  | 46.9                                   | 71.1                                   | @313nm                    |
|                          |                             | %  | 9.6                                    | 33.8                                   | @254nm                    |
|                          |                             | %  | 0.25                                   | 0.17                                   | Water Absorption          |
| Heat&<br>Chemial         | TGA weight loss             | %  | 0.20                                   | 0.25                                   | Out-gassing               |
| Resistance               | NMP elution test            | -  | 0.000                                  | 0.002                                  | OC on Red<br>Resist@520nm |


17 Display Materials Display Materials 18



# Cu/Mo Etchant

## Features

- O Hydrogen peroxide type is environmental friendly
- O Good stability for very high copper loading (> 10k ppm)
- Good etching uniformity
   Good taper profile after etching.



| Test Items                                  | Unit  | DE -series  | Remarks |
|---------------------------------------------|-------|-------------|---------|
| Max. Cu Loading                             | ppm   | >10k        |         |
| Etching Rate                                | Å/min | 4,000~6,000 | 35℃     |
| pH value                                    |       | 3.7~4.4     |         |
| H <sub>2</sub> O <sub>2</sub> Concentration | %     | 6~8.5       |         |
| Taper                                       | ۰     | 30~70       |         |

# Cu Stripper

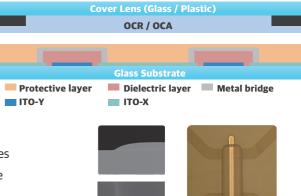
# Features

- O Non-Corrosive to Cu, Mo, Al, ITO and IGZO
- O Water compatible, favorable for post-clean process
- O Regenerable and environmental friendly
- O Low toxicity, no reproductive toxicity



| Test Items      | Unit              | GD-series                    | Remarks |
|-----------------|-------------------|------------------------------|---------|
| Appearance      |                   | Colorless to<br>light yellow |         |
| Density         | g/cm <sup>3</sup> | 1.062~1.082                  |         |
| pH value        |                   | 11                           | 15% aq. |
| Solubility      |                   | Soluble in water             |         |
| Operating Temp. | °C                | 40~50                        |         |

# Touch Panel Materials


# **Photo Overcoat**

# **Applications**

Photo overcoat is applied in touch sensor a dielectric layer and a insulating layer. Photo overcoat contains good properties of insulation, adhesion, chemical resistance and hardness.

## Features

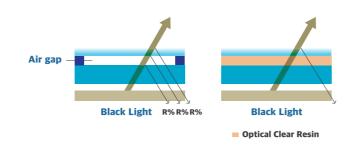
- Optical properties: high transparency and good color hue
- Mechanical properties: good adhesion to bare glass, ITO and metal substrates; good hardness
- O Electrical properties: excellent insulating properties
- $\bigcirc$  Chemical properties: excellent chemical resistance
- O Process window: easy to coat and high sensitivity



# Specifications

| Product Name                      |                    | POCA                               | Remarks                                                        |
|-----------------------------------|--------------------|------------------------------------|----------------------------------------------------------------|
| Field of Applications             |                    | General POC                        |                                                                |
| Treat of Applications             |                    | Slit & Spin Type                   |                                                                |
| Features                          |                    | Spin or Spray Type                 |                                                                |
| Viscosity                         | cP                 | 4 - 7±1                            | At 25°C, 60 rpm                                                |
| Non-Volatile Matter Content       | %                  | 18 - 25±1                          |                                                                |
| Process Conditions                |                    |                                    |                                                                |
| Soft-Bake                         | °C; sec            | 90-110 ; 90                        |                                                                |
| Exposure Energy                   | mJ/cm <sup>2</sup> | 50-100                             |                                                                |
| Mask                              |                    | Soda-lime & Quartz                 |                                                                |
| Development at 23°C               |                    | КОН                                |                                                                |
| Hard-Bake                         | °C; min            | 220-240 ; 30                       |                                                                |
| Transmittance at 400nm            | %                  | > 95                               | UV visible (Carry 300)                                         |
| Refractive Index at 633nm         |                    | 1,51-1,52                          | MP100-M                                                        |
| Surface Resistivity               | Ω/ 🗆               | 1x10 <sup>14</sup>                 |                                                                |
| Dielectric Constant               |                    | 4.3                                | f=10 KHz, 1V                                                   |
| Hardness                          |                    | 3H                                 | JIS pencil hardness                                            |
| Shrinkage                         | %                  | 88±2.0                             | 250 °C* 60min                                                  |
| Remainder                         | %                  | 85±3.0<br>(100mJ/cm <sup>2</sup> ) | THK ratio of before /<br>after Hard-Bake                       |
| Chemical Resistance               |                    | 5B                                 | ASTM-D3359 After Aqua Regia<br>Al Acid / Oxalic Acid / 5% NaOH |
| HT/HH (65°C/90%, 240hrs)          |                    |                                    |                                                                |
| Adhesion on Glass Adhesion on ITO |                    | 5B                                 | ASTM-D3359                                                     |
| Adhesion on Metal                 |                    | 4B                                 |                                                                |




# **Optical Clear Resin**

# **Applications**

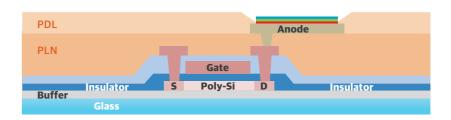
OCR(Optical clear resin) is an optical grade adhesive applied on laminated cover lens, touch panels and LCD modules. OCR can improve visibility and contrast ratio by reducing the reflection light between the interfaces in cover lens, touch panels or LCMs.

## Features

- High transmittance
- Easy to rework
- Excellent adhesion on cover lens, touch panels and LCMs
- O Non-yellowing, low dosage
- Fast cure, low dosage

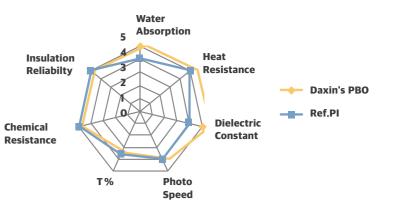


## Specifications


| Product Name                                   |        | OCRP198                                                                          | Remarks                                      |
|------------------------------------------------|--------|----------------------------------------------------------------------------------|----------------------------------------------|
| Field of Applications                          |        | DGS/LCM&GFF/<br>LCM&On-cell                                                      |                                              |
| Features                                       |        | ·Low Modulus for<br>Mura Free<br>·Easy to rework<br>·High Dielectric<br>Constant |                                              |
| Viscosity                                      | cР     | 2,900                                                                            | Brook Field Viscometer at 25.0±1.0°C, CPE 51 |
| Non-Volatile Matter<br>Content                 | %      | 100                                                                              |                                              |
| Exposure Energy                                | mj/cm² | 2,000 ~ 5,000                                                                    | Depend on UV lamp                            |
| Operating Environment<br>(Yellow/ White Light) |        | Yellow                                                                           |                                              |
| Transmittance at 400nm                         | %      | >95                                                                              | THK 0.3 mm G/G                               |
| Yellow Index                                   |        | 0.55                                                                             | THK 0.3 mm G/G                               |
| Haze                                           | %      | 0.26                                                                             | THK 0.3 mm G/G                               |
| Tensile Adhesion                               | kPa    | 210                                                                              | THK 0.3 mm G/G<br>*THK 0.15 mm G/G           |
| Elongation                                     | %      | 2,500                                                                            |                                              |
| Elastic Modulus                                | kPa    | 2.3                                                                              |                                              |
| Dielectric Constant                            |        | 5.2                                                                              | 1MHz                                         |

# Flexible EPD/OLED Materials

# Photosensitive Dielectric/Passivation


# **Applications**

PBO dielectric layers can be used as the pixel defining layer (PDL) over the pixel electrode or the planarization layer (PLN) covering the TFTs in an organic light emitting diode display (OLED) and Electronic Paper Display (EPD).



## Features

- Low water absorption
- Low dielectric constant
- Precision planarization capabilities
- Excellent mechanical and thermal properties
- High chemical resistance
- New : UV-resistance



## Specifications

| Product Name          |    |                                           | PDLN-200 Series                          |                                           | Remarks                                                                   |
|-----------------------|----|-------------------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|
| Pattern Availiability |    | PLN                                       | PDL                                      | PS                                        |                                                                           |
| Features              |    | THK 2.0um,<br>Via 5~6um,<br>Taper 50°~60° | THK 1.5um,<br>Via 10~15um,<br>Taper <30° | THK 1.0um,<br>Dot 10~15um,<br>Taper < 30° |                                                                           |
| Water Absorption      | %  |                                           | (1) 0.11<br>(2) 0.39                     |                                           | TGA (RA85/85, 24Hr)<br>(1) 30°C, 30 min<br>(2) 120°C, 10 min,<br>10°C/min |
| Td (1%)               | °C |                                           | 293                                      |                                           |                                                                           |
| Weight Loss           | %  |                                           | 0.57                                     |                                           | After 250°C/1hr                                                           |
| Chemical Resistance   | -  |                                           | 5B                                       |                                           | TMAH, Stripper,<br>Ag etchant,<br>Oxalic acid                             |
| Dielectric Constant   | -  |                                           | 3.43<br>3.21                             |                                           | @1kHz<br>@1MHz                                                            |
| Recovery Ratio        | %  |                                           | 55.4                                     |                                           | Bump size:<br>10μm x 10μm<br>THK: 1μm                                     |
| Transmittance         | %  |                                           | 94.5                                     |                                           | THK 1.5µm at<br>550 nm                                                    |







# **Functional Monomer**

## **CBDA**

Cyclobutane-1,2-3,4-tetracarboxylic dianhydride (CBDA) is an alicyclic dianhydride.

Based on our unique photochemical reaction, we can synthesize the core structure of cyclobutane and the configuration of CBDA can be determined to be cis-trans-cis.

CBDA is widely used as a raw material for polyimide resins or polyamic acid resins because of its high reactivity during polymerization. In the application of display materials, such as alignment films for liquid-crystal-display devices, CBDA provides excellent electrical properties such as high VHR (Voltage Holding Rate) and low RDC (residual DC Voltage Measurement).

Furthermore, polymers made of CBDA offer good transparency and excellence flexibility, and therefore it is a good candidate for flexible substrate applications.

| Prope                       | rties                                                      | Structure          |
|-----------------------------|------------------------------------------------------------|--------------------|
| Formula                     | C <sub>8</sub> H <sub>4</sub> O <sub>6</sub>               |                    |
| CAS Number                  | 4415-87-6                                                  | 9 0                |
| Molecular Weight            | 196.11                                                     |                    |
| Appearance                  | White Powder                                               |                    |
| Melting Point               | > 300°C                                                    | 0 0                |
| Ion Content (Na, K, Cu, Fe) | < 500 ppb                                                  | cis-trans-cis form |
| Solubility                  | Soluble in NMP,DMAc<br>Slight soluble in Ac <sub>2</sub> O |                    |

## **BDA**

Meso-Butane-1,2,3,4-tetracarboxylic dianhydride (BDA) has good dielectric properties and flexibility which makes it widely used in polyimide resins or polyamic acid resins.

| Propertie                   | es                   |
|-----------------------------|----------------------|
| Formula                     | $C_8H_6O_6$          |
| CAS Number                  | 4534-73-0            |
| Molecular Weight            | 198.13               |
| Appearance                  | white powder         |
| Melting Point               | >240°C               |
| Ion Content (Na, K, Cu, Fe) | <500ppb              |
| Solubillity                 | Soluble in NMP ,DMAc |

## **TCA**

3-(Carboxymethyl)-1,2,4-cyclopentanetricarboxylic Acid 1,4:2,3-dianhydride (TCA) is an alicyclic dianhydride, which is widely used as a raw material for polyimide resins or polyamic acid resins in the application of alignment films for liquid-crystal-display devices due to good solubility and thermal stability. Based on our own developed synthetic process, TCA can be obtained in high purity with low ion content.

| Prope                       | rties                                         | Structure                                      |
|-----------------------------|-----------------------------------------------|------------------------------------------------|
| Formula                     | C <sub>10</sub> H <sub>8</sub> O <sub>6</sub> |                                                |
| CAS Number                  | 6053-46-9                                     | 0                                              |
| Molecular Weight            | 224.17                                        | <b>1</b> /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
| Appearance                  | white powder                                  | ć⟨∫ [                                          |
| Melting Point               | >197°C                                        |                                                |
| Ion Content (Na, K, Cu, Fe) | <500ppb                                       | ö                                              |
| Solubillity                 | Soluble in NMP ,DMAc                          |                                                |

# Monoacrylate

## **CHDMMA**

1,4-Cyclohexanedimethanol monoacrylate(CHDMMA) is manufactured with high purity by Daxin unique synthesis method and widely applied to coating, photoresist and adhesives.

| Pro              | perties                                        | Structure |
|------------------|------------------------------------------------|-----------|
| Formula          | C <sub>11</sub> H <sub>18</sub> O <sub>3</sub> |           |
| CAS Number       | 23117-36-4                                     | 0         |
| Molecular Weight | 198.26                                         | <u></u>   |
| Appearance       | Transparent liquid                             | но        |
| Viscosity(25°C)  | 90-105cPs                                      |           |
| Purity           | >98%                                           |           |

23 Key Raw Materials 24



# **Low Chlorine Epoxy Monomer**

## **BPF Epoxy Monomer**

Bisphenol F epoxy monomer is manufactured by Daxin halogen-free process to achieve extremely low halogen content and high purity. This unique epoxy monomer can be ideally applied to semiconductor encapsulation in terms of high reliability requirements.

| Prop                              | erties                                         |
|-----------------------------------|------------------------------------------------|
| Formula                           | C <sub>19</sub> H <sub>20</sub> O <sub>4</sub> |
| CAS Number                        | 2095-03-6                                      |
| Molecular Weight                  | 312                                            |
| Appearance                        | Colorless to pale yellow liquid                |
| Viscosity (25°C)                  | 1.0 - 2.0 Pa · s                               |
| EEW                               | 156 - 168 g/eq.                                |
| Total Halogen Content (CI, Br)    | 1~100 ppm<br>(Customized)                      |
| Metal ion Content (Na, K, Ca, Fe) | <5 ppm                                         |

## **TGP**

Triglycidylphenol epoxy monomer consists of high-ratio epoxy functional groups and demonstrates low viscosity, low halogen content and low water absorption to meet the requirements for high degree of cross-linking, low formulation viscosity and high reliability.

| Prop                              | Structure                                      |    |
|-----------------------------------|------------------------------------------------|----|
| Formula                           | C <sub>15</sub> H <sub>18</sub> O <sub>4</sub> |    |
| CAS Number                        | 13561-08-5                                     | 01 |
| Molecular Weight                  | 262                                            |    |
| Appearance                        | pale yellow liquid                             |    |
| Viscosity (25°℃)                  | 0.2 - 0.6 Pa · s                               |    |
| EEW                               | 88 - 99 g/eq.                                  |    |
| Total Halogen Content (CI, Br)    | 1~100 ppm<br>(Customized)                      |    |
| Metal ion Content (Na, K, Ca, Fe) | <5 ppm                                         |    |

# Specialty Polymer

# **Modified Acrylate**

Daxin is committed to providing a wide range of modified acrylate oligomers and polymers with high performance, such as high reactivity, high adhesion and ability of development, to satisfy customer's requirements of high-end products. Daxin's modified acrylates have been used in the optical adhesives, photoresists for display, UV coatings, and other specialty applications.



# Polyurethane Acrylate

| Product name | Structure | Functionality | Viscosity<br>(cP @ 25°C) | D <sub>k</sub><br>(@1MHz) | Characteristics                          | Applications |
|--------------|-----------|---------------|--------------------------|---------------------------|------------------------------------------|--------------|
| DAU001       |           | 2             | 54,000~68,000            | 5.2                       | Flexibility, High<br>elongation, High Dk | UV adhesives |

# Multifunctional Acrylate

| Product name | Structure                   | Functionality | Viscosity<br>(cP @ 25°C) | Acid Value<br>(mg KOH/g) | Characteristics                                                          | Applications                          |
|--------------|-----------------------------|---------------|--------------------------|--------------------------|--------------------------------------------------------------------------|---------------------------------------|
| DAC001       | R = OH or CO,H A = Acrylate | ≧ 5           | 42.5 ± 4                 | 14.5 ~ 18                | Alkaline-soluble, High<br>mechanical strength, High<br>photo sensitivity | UV ink,<br>UV-coating,<br>Photoresist |

# Silane-containing Acrylate

| Product<br>name | Structure                                                                     | Functionality | Viscosity<br>(cP @ 25°C) | Characteristics                  | Applications                             |
|-----------------|-------------------------------------------------------------------------------|---------------|--------------------------|----------------------------------|------------------------------------------|
| DAS001          | R: H or C <sub>3</sub> H <sub>3</sub> O or Si(OCH <sub>3</sub> ) <sub>3</sub> | 140 ~ 180     | 7.2                      | High adhesion,<br>High toughness | UV coating,<br>photoresist,<br>adhesives |

# Alkaline-soluble Acrylate

| Product name | Structure            | Functionality | Viscosity<br>(cP @ 25°C) | Characteristics                             | Applications               |
|--------------|----------------------|---------------|--------------------------|---------------------------------------------|----------------------------|
| DAE001       | O: OH or acid groups | 560-600       | 22 ± 4                   | High thermal stability,<br>Alkaline-soluble | UV coating,<br>photoresist |

25 Key Raw Materials 26



# **Modified Siloxane**

With its expertise in side-chain design and synthesis approaches, Daxin has developed several modified-siloxane products, including epoxymodified siloxane and acrylate-modified siloxane, with thermal/UV curable abilities. In addition, special structures introduced in the side chain provides siloxane-based materials unique features, such as flexibility, low shrinkage, amphiphilicity…etc., that make them good candidates for special requirements. The potential applications for these modified siloxanes are sealant, hardener for coating, silicone hydrogel…etc.



# **Epoxy-modified Siloxane**

| Produc<br>name | : Structure              | Functionality | EEW<br>(g/eg) | (cP @ 25°C ) | Characteristics                                    | Applications               |
|----------------|--------------------------|---------------|---------------|--------------|----------------------------------------------------|----------------------------|
| DSE002         | R = expoxy (so ) R HO OH | 1             | 178           | 40 ± 10      | High thermal stability,<br>low shrinkage, hardness | Thermal curing<br>hardcoat |

# Acrylate-modified Siloxane

| Product<br>name | Structure           | Functionality | (cP @ 25°C ) | Characteristics                     | Applications                |
|-----------------|---------------------|---------------|--------------|-------------------------------------|-----------------------------|
| DSA001          | Amphiphlic Siloxane | 2             | 40,000       | UV/thermal curable,<br>amphiphilicy | Silicone hydrogel, coating, |

# **High-Purity Polymer**

With the ability of polymer synthesis, precision manufacturing and purification technologies, Daxin can provide the polymers used in photoresists. Our high purity polymers can meet the requirements of well-controlled Mw (molecular weight) /PDI(polymer dispersity index) /copolymer ratio and low metal content. Powder and solution form are both available.



# **Development and Improvement of Analytical Techniques and Testing Equipment**

- O Cold trap-GC/MS (Ex. Evolved Gas Analysis and Thermal Desorption Analysis)
- O Development of testing method for the thermal expansion coefficient of transparent material film
- O Development of technology on the rate of development of thin film material
- Modifications of variable temperature testing

# Identification of Chemical Composition

- Separation and purification of mixtures
- Composition identification
- Product failure mode analysis
- Identification of impurities and source tracking
- Product efficacy difference analysismaterial





· Mass Spectrometry: GC-MS,ICP-MS

· Spectrum: FTIR, UV-Visible

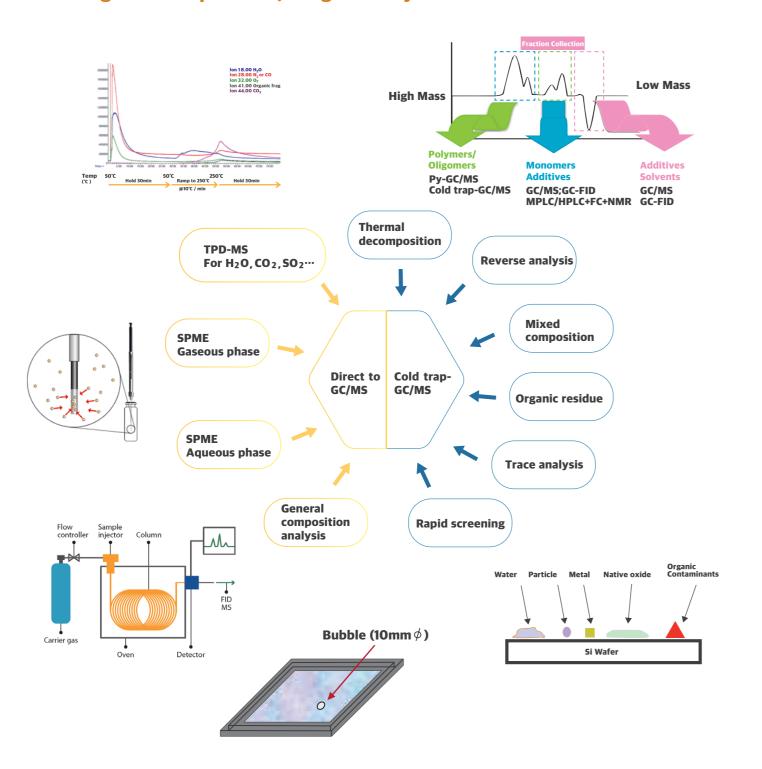
· Universal Tensile Tester

Rheometer





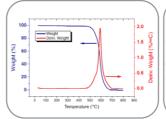
· LCR Meter

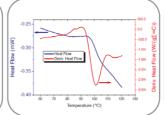

· Zeta Potential Analyzer

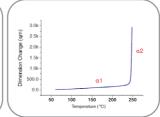
· High Resistance Meter

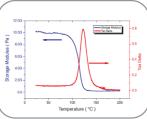
27 Key Raw Materials




# **Organic Components/Outgas Analysis**





# **Thermal Analysis**


Physical parameter varies with temperature, time, and environment

| TGA                                                                                           | DSC                                                                                                             | TMA                                                                            | DMA                                                                                               |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Weight change                                                                                 | An endothermic or exothermic change                                                                             | Dimension change                                                               | The response to obtain phase angle and deformation data as applying a stress or strain the sample |
| Decomposition temperature (T <sub>d</sub> )     Composition information     Thermal stability | Glass transition temperature Melting temperature Crystallization temperature Endothermic or exothermic reaction | Thermal expansion coefficient Glass transition temperature Melting temperature | Change with temperature while under dynamic stress                                                |












# **TA TGA**Model: Q500 Applications:

- Weight loss analysis
   Thermal stability analysis
- 3. General composition analysis



# TA TMA

Mode: Q400EM Applications: 1. CTE

- 2. Strain & stress
- 3. Creep analysis





# TA DSC

Model: Q200 & Q2000 Applications:

- 1. Phase transition temperature  $(T_m, T_g, T_c)$
- 2. Heat of reaction
- 3. Specfic heat capacity
- 4. Compatible with UV-light

29 Instrument Anaylsis 30



# Headquarters - Central Taiwan Science Park

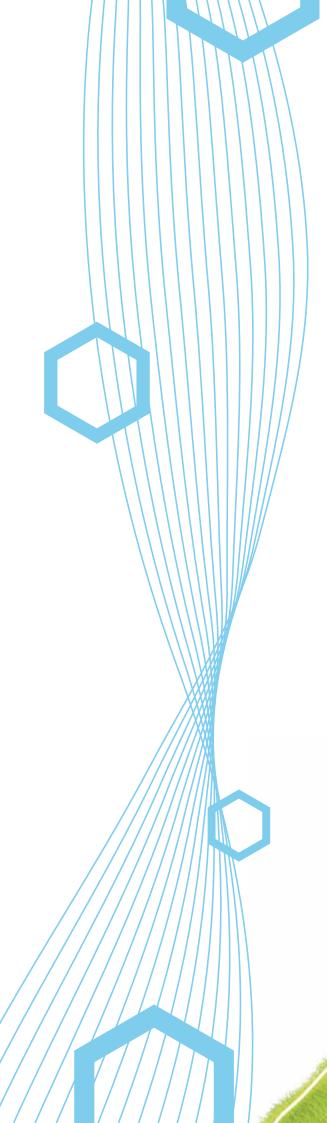
No.15 Keyuan 1st Rd, Certral Taiwan Science Park, Taichung City, 40763, Taiwan, R.O.C.

Tel: +886-4-2460-8889 Fax: +886-4-2460-8896

E-mail:info@daxinmat.com

## Northern Area Branch

Rm. B502J, 5f.-2, No.185, Kewang Rd., Longtan Dist, Taoyuan City 32556, Taiwan, R.O.C. E-mail:info@daxinmat.com


# **Chungkang Branch**

No.2, Jian 8th Rd., Wuqi Dist., Taichung City, 435, Taiwan, R.O.C. E-mail:info@daxinmat.com

# **Shenzhen Office**

Rm. 1501, Shanmei Technology Builing, No.2009, Shahe West Road, Nanshan District, Shenzhen City, China.

Tel: +85-755-2585-7795 Fax: +85-755-2583-2003 E-mail: info@daxinmat.com

